I try to train the dataset from this Kaggle IMDB dataset but got a different shape of the data.
With these code:
# Membuat arsitektur model menggunakan embedding
model = tf.keras.Sequential([
tf.keras.layers.Embedding(input_dim=80000, output_dim=16),
tf.keras.layers.LSTM(64),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(6, activation='softmax')
])
# Compile model
model.compile(loss="categorical_crossentropy",
optimizer="adam",
metrics=['accuracy'])
#Melatih model
tweet_train = tf.stack(tweet_train)
label_test = tf.stack(label_test)
num_epochs=30
history = model.fit(
np.array(tweet_train),
np.array(label_test),
epochs=num_epochs,
validation_data=(padded_test, label_test),
verbose=2
)
But the output is
“ValueError: Data cardinality is ambiguous:
x sizes: 11367
y sizes: 2842 Make sure all arrays contain the same number of samples”
How can I fix this?
You are passing training tweets and testing labels to mode.fit, of course it would not work, pass the correct variables.
Yes, i made a mistake. Thanks for the reply.